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Recap from last session
• Michaelis-Menten mechanism for enzyme kinetics
• various assumptions made
• different ways of plotting
• different forms of inhibition

• Autocatalysis (follows an “S curve”)
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3.5 Polymerization
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3.5 Polymerization
• 2 cases of polymerization reactions: stepwise & chain type

Stepwise polymerization
• Any 2 monomers may react at any time or add to chain growth
• E.g. polycondensation of a hydroxyacid to from a polyester:
 HO–R–COOH + HO–R–COOH → HO–R–COO–R–COOH + H#O 
• Rate equation for consumption of acid groups:

 − * A
*+

= − * COOH
*+

= 𝑘 COOH OH = 𝑘 A # 
      using COOH = OH = A
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HO–R–COOH + HO–R–COOH → HO–R–COO–R–COOH + H#O 

 − * A
*+

= − * COOH
*+

= 𝑘 COOH OH = 𝑘 A # 

• Integration yields:

    A + =
A !

!,-+ A !
 

• We define the fraction p of monomers that reacted:

     𝑝 =
A !" A
A !

=
-+ A !

!,-+ A !
 

• We define the degree of polymerization, i.e. average chain length 𝑁  :

    𝑁 =
A !
A = !

!".
= 1 + 𝑘𝑡 A / 

• How does average chain length increase with time?
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Chain polymerization
• proceeds by adding monomers to end of growing chain
• e.g. radical polymerization of ethylene to polyethylene:
   R–CH#CH# ; 	+	CH#CH# → R–CH#CH#–CH#CH# ; 
• Proceeds in 3 distinct steps:
A) Initiation
• e.g. thermally 

   In
𝑘0
→ 2 R ;       with rate equation: * R1

*+
= 2𝑘0 In  

• Radical reacts with monomer M to give radical M! ;

    R ; +	M	
fast
→	 M! ; 
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Chain polymerization
B) Propagation (chain growth)
• Addition of further monomers M for chain growth

    M! ; 	+	M
𝑘.
	→	M# ;

    M# ; 	+	M	
𝑘.
→	M2 ;

     …
• We simplify by assuming same rate const. 𝑘.	independent of chain 

length
• Rate of growth:   𝑣. = 𝑘. M! ; [M]

6



Chain polymerization
C) Termination
• when 2 radicals combine

     M3 ; 	+	M4 ; 	
𝑘+
→	M3,4 (mutual termination) 

• We will not consider things like
    M3 ; 	+	M4 ;	→ 	M3 	+ 	M4 (disproportionation)

    M3 ; 	+	M →	M3 + 	M ; (chain transfer)

• How to get a solution for the rate of polymer growth 𝑣. ???
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• How to get a solution for the rate of polymer growth 𝑣. ?

     𝑣. = − * M
*+

= 𝑘. M ; M  

 * M1	
*+

     = 2𝑓𝑘0 In  - depletion

  with efficiency of initiation 𝑓 = 67*0879	030+07+03:	6;78+0<3
+<+79	3=4>;6	<?	67*0879@

     = 2𝑓𝑘0 In  −2𝑘+ M ; #

• How high is the conc. of M ; typically compared to rest?
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• We can apply steady-state approximation to all radical chains:

   * M1	
*+

= 0 = 2𝑓𝑘0 In − 2𝑘+ M ; #

• where we assume initiator radicals react instantaneously to form 
radical chains with efficiency 𝑓
• and took the second term from mutual termination

• Separate variables and integrate to yield 

    M ; = ?-"
-#

$
% In

$
% 
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• How to get a solution for the rate of polymer growth 𝑣. ?

     𝑣. = − * M
*+

= 𝑘. M ; M  

  inserting  M ; = ?-"
-#

$
% In

$
% 

• yields

    𝑣. = − * M
*+

= 𝑘.
?-"
-#

$
% In

$
% M  
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• We define the kinetic chain length 𝜆:

  𝜆 = monomer	units	consumed
activated	centers	produced 

• We estimate 𝜆 by taking the ratio of the corresponding rates
• …and by assuming steady-state conditions, so
 rate of activated center production = rate of termination

•  𝜆 ≈ rate	of	monomer	consumption
rate	of	activated	center	production =

A&
A"
= -& M1 M

#?-" In ≈ -& M1 M
#-# M1

%

          = -& M
#-# M1

= -&

# ?-"-#
$
%

In "$% M
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• We obtain the degree of polymerization 𝑁  by assuming all chains are 
terminated by mutual termination, yielding “the real chain length” :

   𝑁 = 2𝜆

             = -&

?-"-#
$
%

In "$% M  

• What happens when using smaller initiator concentrations?
 à Polymers with higher molecular weight are obtained
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Chapter 4
Kinetic Theory of Gases



4.1 Average Translational Kinetic Energy
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assume elastic collisions between hard spheres



4.1 Average Translational Kinetic Energy
Deriving the Ideal Gas Law
Assumptions:
• Ideal gas behavior independent of composition at sufficiently low 

pressure, so no interactions (average distance >> diameter of gas 
particle)
• Thus, no potential energy, only kinetic energy
• Collisions (for now) are fully elastic between hard spheres
• No change to total translational energy upon collision, i.e. no 

internal degrees of freedom (vibrations & rotations) excited during 
collision
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• Determine pressure of an ideal gas
   with mass 𝑚 
   and with velocity 𝑢! and
   components   𝑢!B, 𝑢!C,𝑢!D  
   in this rectangular box

• Momentum p = 𝑚	𝑢!B  
• After elastic collision à −𝑚𝑢!B  
• Force exerted on wall is
 𝐹 = ∆.

∆+
= 4∆=$'

∆+
 

• Absolute change in momentum upon collision:
 ∆ 𝑚𝑢!B = −𝑚𝑢!B −𝑚𝑢!B = 2𝑚𝑢!B
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• Absolute change in momentum upon collision:
 ∆ 𝑚𝑢!B = −𝑚𝑢!B −𝑚𝑢!B = 2𝑚𝑢!B

• Time period it takes for a round trip:
 ∆𝑡 = 2 7

=$'
 

• Momentum per unit time (force) imparted on right wall therefore:

 ∆ 4	=$'
∆+

= 4	=$'%

7
= 𝐹! 

• Newton’s 2nd law: force on molecule = force on wall
• Associated pressure 𝑃! by dividing by surface area of right wall 𝑏𝑐:

   𝑃! =
F$
>8
= 4=$'%

7>8
= 4=$'%

G
   with volume 𝑉 = 𝑎𝑏𝑐 
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• Summing over all molecules for total pressure

 𝑃 = 	∑HI!J 𝑃H = ∑HI!J 4=('
%

G
= 4

G
∑HI!J 𝑢HB#  

• With  ∑HI!J 𝑢HB# = 𝑁 𝑢B#   we obtain

   𝑃𝑉 = 𝑚	𝑁 𝑢B#  

• Gas is isotropic, so
  𝑢B# = 𝑢C# = 𝑢D#  
• Since    𝑢# = 𝑢B# + 𝑢C# + 𝑢D#, it follows that 
  𝑢# = 𝑢B# + 𝑢C# + 𝑢D#  
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 𝑢# = 𝑢B# + 𝑢C# + 𝑢D#  

• Hence 𝑢B# = !
2
𝑢#  

• and   𝑃𝑉 = !
2
𝑁𝑚 𝑢#  

• From statistical thermodynamics we know that the average 
translational energy per molecule of an ideal gas is

  !
#
𝑚𝑢# = !

#
𝑚 𝑢# = 2

#
𝑘K𝑇    (!

#
𝑘K𝑇 per direction)

• Substitute into above eq. yields
   𝑃𝑉 = 𝑁𝑘K𝑇 = 𝑛𝑅𝑇

Ideal Gas Law
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  𝑃𝑉 = 𝑁𝑘K𝑇 = 𝑛𝑅𝑇
• For the root-mean-square speed of a gas molecule we find:

   𝑢64@ = 𝑢# = 2LM
N
= 2-)M

4

• Note, in general 𝑢# ≠ 𝑢 # , so  𝑢64@ ≠ 𝑢  𝑢 : average speed

• How does 𝑢64@  look plotted against temperature?
• What happens if I go to a lighter gas molecule/element?



4.2 The Maxwell-Boltzmann Distribution
Goal: to find speed distribution of a gas

• Historically earlier: somewhat heuristic treatment by Maxwell
àNo need to learn, but take a look at the lecture notes for the 

derivation, if you are interested :)

• We will here derive Boltzmann’s general approach
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• Use Boltzmann distribution from statistical thermodynamics:
• In thermal equilibrium, the probability 𝑃0  of finding the system in 

state of a certain energy 𝐸0  is:

    𝑃0 =
;
*
+"
,)-

∑( ;
*
+(
,)-

= ;
*
+"
,)-

P
 

with 𝑄 = ∑H 𝑒
"
+(
,)- : the partition function, sum over all energy levels

    and  ∫"Q
Q 𝑒"

+(
,)-𝑑𝐸 = 1 
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• Using that the translational energy for one velocity component
 (e.g. 𝑥) of a gas molecule is !

#
𝑚𝑢B#  we substitute to get:

    𝑃(=',") =
;
*
/0',"

%

%	,)-

P
  

     with Q = ∫"Q
Q 𝑒"

/0',(
%

%	,)- 	 𝑑𝑢B

• Use that  ∫"Q
Q 𝑒"7B%𝑑𝑥 = T

7
 

• to find for the partition function Q = #T-)M
4

 

• And overall 𝑓 𝑢H = N
#TLM

𝑒"
20(

%

%3- = 4
#T-)M

	 𝑒"
/0(

%

%,)-  
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probability 
distribution for a 
single velocity 
component 



• To derive the speed distribution of an ideal gas (i.e. distribution of 
the magnitude of velocity), we now write down the 3-dimensional 
velocity distribution function P 𝑢B , 𝑢C , 𝑢D :

     P 𝑢B , 𝑢C , 𝑢D = 4
#T-)M

4
% 𝑒"

/(0'%607%608%)
%,)-

• But we want to find the actual probability in a given, very small 
interval (meaning it is approximated to be constant):
	 	 			kP = P 𝑢B , 𝑢C , 𝑢D 	𝑑𝑢B , 𝑑𝑢C , 𝑑𝑢D
• We perform a coordinate transformation from Cartesian to 

spherical coordinates:
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𝑥 = 𝑟	𝑠𝑖𝑛𝜃	𝑐𝑜𝑠𝜑
𝑦 = 𝑟	𝑠𝑖𝑛𝜃	𝑠𝑖𝑛𝜑
𝑧 = 𝑟	𝑐𝑜𝑠𝜃



    P 𝑢B , 𝑢C , 𝑢D = 4
#T-)M

4
% 𝑒"

/(0'%607%608%)
%,)-

	 	 			kP = P 𝑢B , 𝑢C , 𝑢D 	𝑑𝑢B , 𝑑𝑢C , 𝑑𝑢D
• We perform a coordinate transformation from Cartesian to 

spherical coordinates:
•  using 𝑢B# + 𝑢C# + 𝑢D# = 𝑢# 

• and 𝑑𝑢B𝑑𝑢C𝑑𝑢D =
U(=',=7,=8)
U(=,W,X)

𝑑𝑢	𝑑𝜑	𝑑𝜃 = 𝑢# sin 𝜃 𝑑𝑢	𝑑𝜑	𝑑𝜃 

• We eliminate the angular part through integration over all 
directions the molecule can travel

• kP 𝑢 𝑑𝑢 = 4
#T-)M

4
% 𝑢#𝑒"

/0%
%,)-𝑑𝑢 ∫/

#T 𝑑𝜑 ∫/
T sin 𝜃 𝑑𝜃
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kP 𝑢 𝑑𝑢 = 4
#T-)M

4
% 𝑢#𝑒"

/0%
%,)-𝑑𝑢 ∫/

#T 𝑑𝜑 ∫/
T sin 𝜃 𝑑𝜃

• We thus obtain the    Maxwell-Boltzmann distribution:

            kP 𝑢 𝑑𝑢 = 4𝜋 4
#T-)M

4
% 𝑢#𝑒"

/0%
%,)-𝑑𝑢
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Maxwell-Boltzmann distribution:

            kP 𝑢 𝑑𝑢 = 4𝜋 4
#T-)M

4
% 𝑢#𝑒"

/0%

%,)-𝑑𝑢  

                  also called 𝐹 𝑢 𝑑𝑢
Example: Speed distribution of nitrogen at 300 K and 1000 K:
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4.3 Measurements of the Velocity Distribution

• We remember from before that for ideal gas  𝑃𝑉 = !
2
𝑁𝑚 𝑢#  

•  and that the rms-velocity is 𝑢64@ = 𝑢# = YG
J	4

• We want to verify that generally across all values this holds true:

    𝑃(=') =
;
*/0'%
%	,)-

P
   But how?

• Idea:
Measure something easily observable, that is influenced by 𝑢Z
à Spectroscopy! Measure absorption or emission of light
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A) Measure Doppler broadening of your absorption or emission 
spectrum of molecules in gas phase
• if molecule moves towards us: blue-shift/frequency increase 

of light
• if molecule moves away from us: red-shift/frequency decrease 

of light
à Use this to infer speed distribution of molecules, or temperature 
of the gas :)
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𝐸 = ℎ	𝜈
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• Frequency of light emitted or absorbed:

  𝜈 = 𝜈/ 1 + ='
8

  

    𝜈/: transition frequency of static molecule

       à 𝑢B 	=
[
[!
− 1 𝑐

• How does intensity distribution of light frequencies 𝐼 𝜈  look if 𝑢B  
follows Boltzmann distribution?

• Substitute into the 1D velocity distribution (along observer 
direction only!) to find:

𝐼 𝜈 ∝ 𝑒"
4='%
#-)M ∝ 𝑒

"48
% ["[! %

#[!%-)M



31

𝐼 𝜈 ∝ 𝑒
"48

% ["[! %

#[!%-)M

• We see a broadening of the line shape following a gaussian

• With variance  𝜎# = [!%-)M
48%

 

• Meaning the width of the spectrum increases with and is 
proportional to the temperature



B) Measure gas particles arriving at a detector
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• slits cut into series of spinning discs
• a given rotation speed will only allow molecules of one specific 

velocity to pass
• measurement of the gas flux exiting the discs as a function of the 

rotation frequency yields the velocity distribution


