

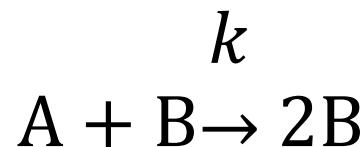
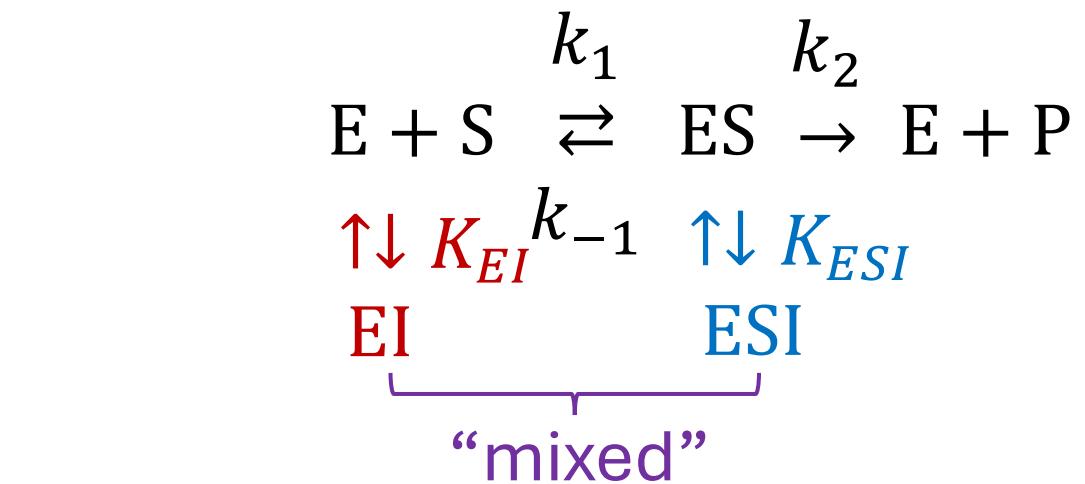
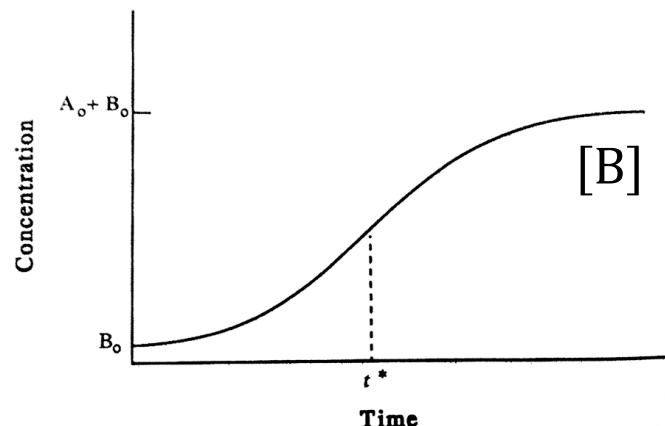
Kinetics & Dynamics of Chemical Reactions

Course CH-310

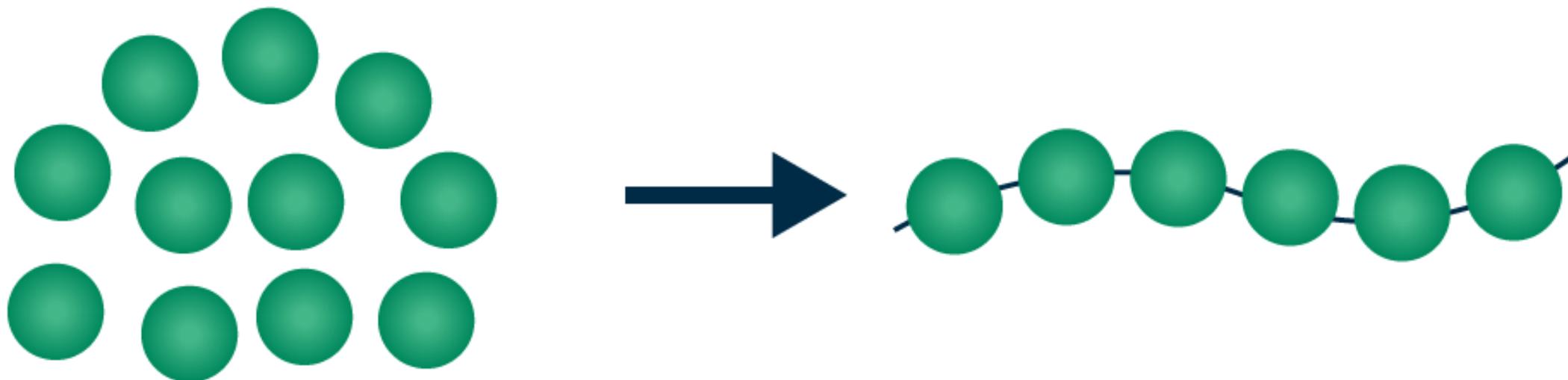
Prof. Sascha Feldmann

Recap from last session

- Michaelis-Menten mechanism for enzyme kinetics
 - various assumptions made
 - different ways of plotting
 - different forms of inhibition
- Autocatalysis (follows an “S curve”)



3.5 Polymerization



3.5 Polymerization

- 2 cases of polymerization reactions: stepwise & chain type

Stepwise polymerization

- Any 2 monomers may react at any time or add to chain growth
- E.g. polycondensation of a hydroxyacid to from a polyester:

- Rate equation for consumption of acid groups:

$$-\frac{d[\text{A}]}{dt} = -\frac{d[\text{COOH}]}{dt} = k[\text{COOH}][\text{OH}] = k[\text{A}]^2$$

using $[\text{COOH}] = [\text{OH}] = [\text{A}]$

$$-\frac{d[\text{A}]}{dt} = -\frac{d[\text{COOH}]}{dt} = k[\text{COOH}][\text{OH}] = k[\text{A}]^2$$

- Integration yields:

$$[\text{A}]_t = \frac{[\text{A}]_0}{1+kt[\text{A}]_0}$$

- We define the *fraction p of monomers that reacted*:

$$p = \frac{[\text{A}]_0 - [\text{A}]}{[\text{A}]_0} = \frac{kt[\text{A}]_0}{1+kt[\text{A}]_0}$$

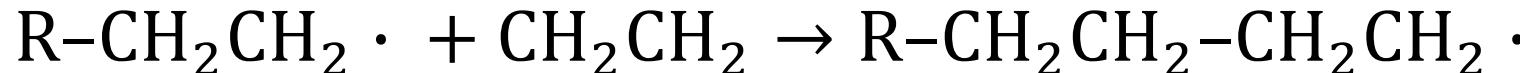
- We define the *degree of polymerization, i.e. average chain length $\langle N \rangle$* :

$$\langle N \rangle = \frac{[\text{A}]_0}{[\text{A}]} = \frac{1}{1-p} = 1 + kt[\text{A}]_0$$

- How does average chain length increase with time? **Linearly!**

Chain polymerization

- proceeds by adding monomers to end of growing chain
- e.g. radical polymerization of ethylene to polyethylene:

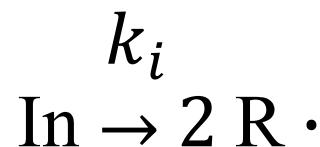


- Proceeds in 3 distinct steps:

A) Initiation

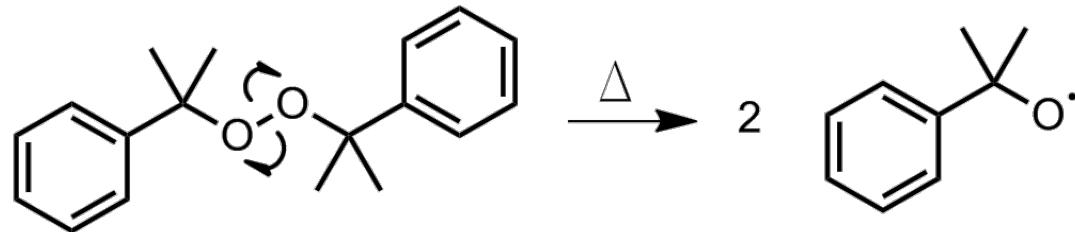
- e.g. thermally

$$k_i$$



with rate equation:

$$\frac{d[\text{R}\cdot]}{dt} = 2k_i[\text{In}]$$



*slow
reaction*

- Radical reacts with monomer M to give radical $\text{M}_1\cdot$

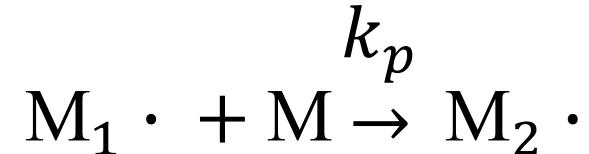
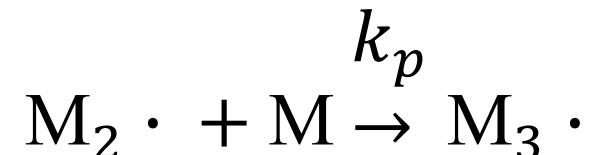
fast

*fast
reaction*

Chain polymerization

B) Propagation (chain growth)

- Addition of further monomers M for chain growth



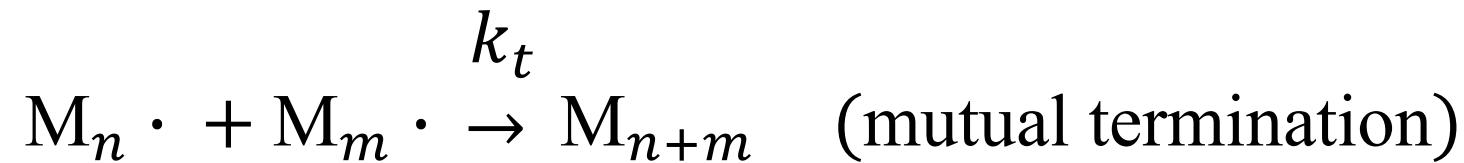
...

- We simplify by assuming same rate const. k_p independent of chain length
- Rate of growth: $v_p = k_p [M_1 \cdot][M]$

Chain polymerization

C) Termination

- when 2 radicals combine



- We will not consider things like

- How to get a solution for the rate of polymer growth v_p ???

- How to get a solution for the rate of polymer growth v_p ?

$$\nu_p = - \frac{d[\text{M}]}{dt} = k_p [\text{M} \cdot] [\text{M}]$$

$$\frac{d[M \cdot]}{dt} = \text{production} - \text{depletion}$$


$$= 2fk_i[\text{In}] - \text{depletion}$$

with efficiency of initiation $f = \frac{\text{radical initiating reaction}}{\text{total number of radicals}}$

$$= 2fk_i[\text{In}] - 2k_t[\text{M} \cdot]^2$$

- How high is the conc. of $M \cdot$ typically compared to rest?

- We can apply steady-state approximation to all radical chains:

$$\frac{d[M\cdot]}{dt} = 0 = 2fk_i[In] - 2k_t[M\cdot]^2$$

- where we assume initiator radicals react instantaneously to form radical chains with efficiency f
- and took the second term from mutual termination
- Separate variables and integrate to yield

$$[M\cdot] = \left(\frac{fk_i}{k_t}\right)^{\frac{1}{2}} [In]^{\frac{1}{2}}$$

- How to get a solution for the rate of polymer growth v_p ?

$$v_p = -\frac{d[M]}{dt} = k_p [M \cdot] [M]$$

inserting $[M \cdot] = \left(\frac{fk_i}{k_t}\right)^{\frac{1}{2}} [In]^{\frac{1}{2}}$

- yields

$$v_p = -\frac{d[M]}{dt} = k_p \left(\frac{fk_i}{k_t}\right)^{\frac{1}{2}} [In]^{\frac{1}{2}} [M]$$

- We define the *kinetic chain length* λ :

$$\lambda = \frac{\text{monomer units consumed}}{\text{activated centers produced}}$$

- We estimate λ by taking the ratio of the corresponding *rates*
- ...and by assuming steady-state conditions, so
rate of activated center production = rate of termination

$$\begin{aligned} \bullet \quad \lambda &\approx \frac{\text{rate of monomer consumption}}{\text{rate of activated center production}} = \frac{\nu_p}{\nu_i} = \frac{k_p[M \cdot][M]}{2fk_i[In]} \approx \frac{k_p[M \cdot][M]}{2k_t[M \cdot]^2} \\ &= \frac{k_p[M]}{2k_t[M \cdot]} = \frac{k_p}{2(fk_i k_t)^{\frac{1}{2}}} [In]^{-\frac{1}{2}} [M] \end{aligned}$$

- We obtain the degree of polymerization $\langle N \rangle$ by assuming all chains are terminated by mutual termination, yielding “the real chain length”:

$$\begin{aligned}\langle N \rangle &= 2\lambda \\ &= \frac{k_p}{(fk_i k_t)^{\frac{1}{2}}} [In]^{-\frac{1}{2}} [M]\end{aligned}$$

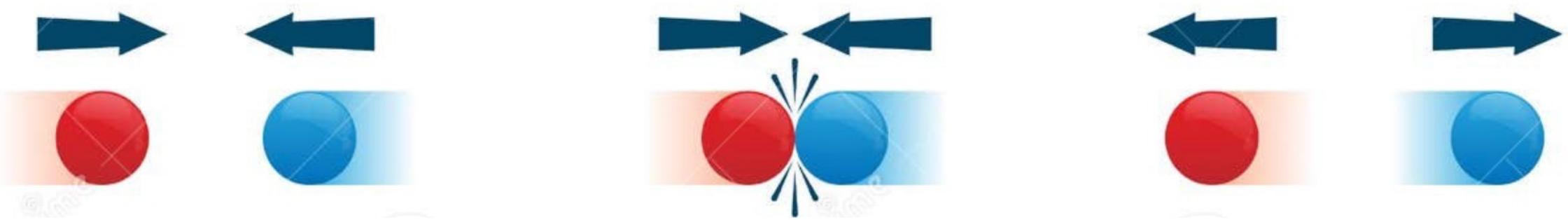
- What happens when using smaller initiator concentrations?
→ Polymers with higher molecular weight are obtained

Chapter 4

Kinetic Theory of Gases

4.1 Average Translational Kinetic Energy

assume elastic collisions between hard spheres



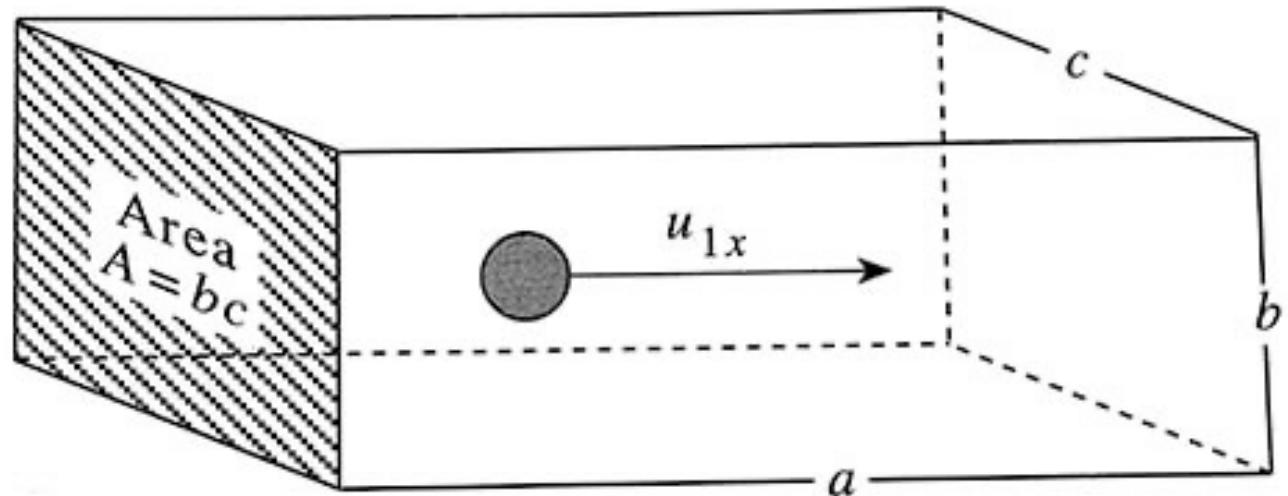
4.1 Average Translational Kinetic Energy

Deriving the Ideal Gas Law

Assumptions:

- Ideal gas behavior independent of composition at sufficiently low pressure, so no interactions (average distance \gg diameter of gas particle)
- Thus, no potential energy, only kinetic energy
- Collisions (for now) are fully elastic between hard spheres
- No change to total translational energy upon collision, *i.e.* no internal degrees of freedom (vibrations & rotations) excited during collision

- Determine pressure of an ideal gas with mass m and with velocity u_1 and components u_{1x}, u_{1y}, u_{1z} in this rectangular box



- Momentum $p = m u_{1x}$
- After elastic collision $\rightarrow -mu_{1x}$
- Force exerted on wall is

$$F = \frac{\Delta p}{\Delta t} = \frac{m\Delta u_{1x}}{\Delta t}$$

- Absolute change in momentum upon collision:

$$\Delta(mu_{1x}) = |-mu_{1x} - mu_{1x}| = 2mu_{1x}$$

- Absolute change in momentum upon collision:

$$\Delta(mu_{1x}) = |-mu_{1x} - mu_{1x}| = 2mu_{1x}$$

- Time period it takes for a round trip:

$$\Delta t = 2 \frac{a}{u_{1x}}$$

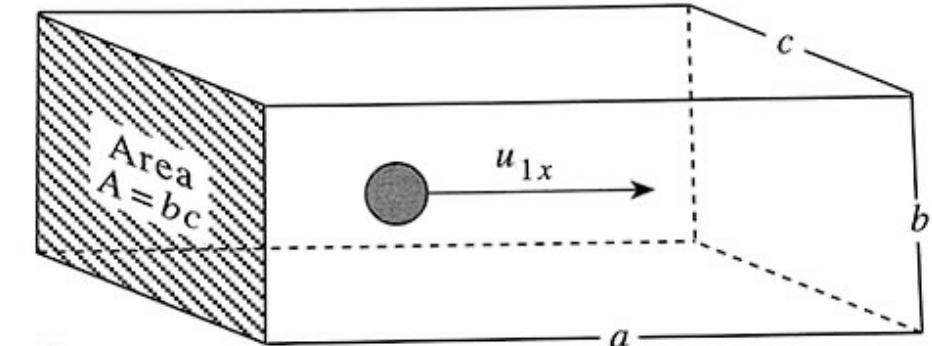
- Momentum per unit time (force) imparted on right wall therefore:

$$\frac{\Delta(m u_{1x})}{\Delta t} = \frac{m u_{1x}^2}{a} = F_1$$

- Newton's 2nd law: force on molecule = force on wall

- Associated pressure P_1 by dividing by surface area of right wall bc :

$$P_1 = \frac{F_1}{bc} = \frac{mu_{1x}^2}{abc} = \frac{mu_{1x}^2}{V} \quad \text{with volume } V = abc$$



- Summing over all molecules for total pressure

$$P = \sum_{j=1}^N P_j = \sum_{j=1}^N \frac{mu_{jx}^2}{V} = \frac{m}{V} \sum_{j=1}^N u_{jx}^2$$

- With $\sum_{j=1}^N u_{jx}^2 = N\langle u_x^2 \rangle$ we obtain

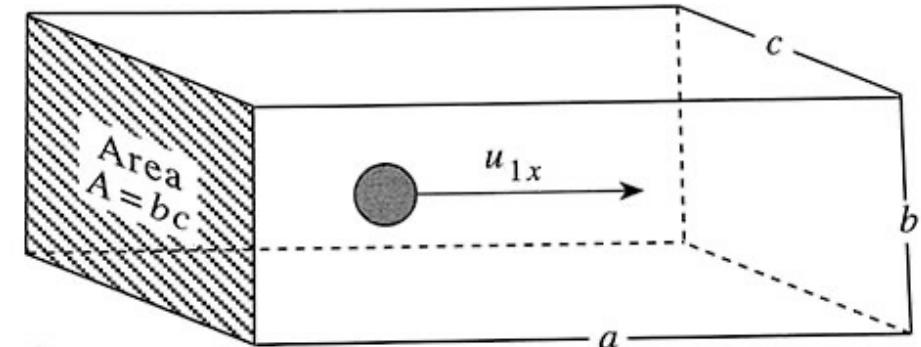
$$PV = m N\langle u_x^2 \rangle$$

- Gas is isotropic, so

$$\langle u_x^2 \rangle = \langle u_y^2 \rangle = \langle u_z^2 \rangle$$

- Since $u^2 = u_x^2 + u_y^2 + u_z^2$, it follows that

$$\langle u^2 \rangle = \langle u_x^2 \rangle + \langle u_y^2 \rangle + \langle u_z^2 \rangle$$



$$\langle u^2 \rangle = \langle u_x^2 \rangle + \langle u_y^2 \rangle + \langle u_z^2 \rangle$$

- Hence $\langle u_x^2 \rangle = \frac{1}{3} \langle u^2 \rangle$

- and $PV = \frac{1}{3} Nm \langle u^2 \rangle$

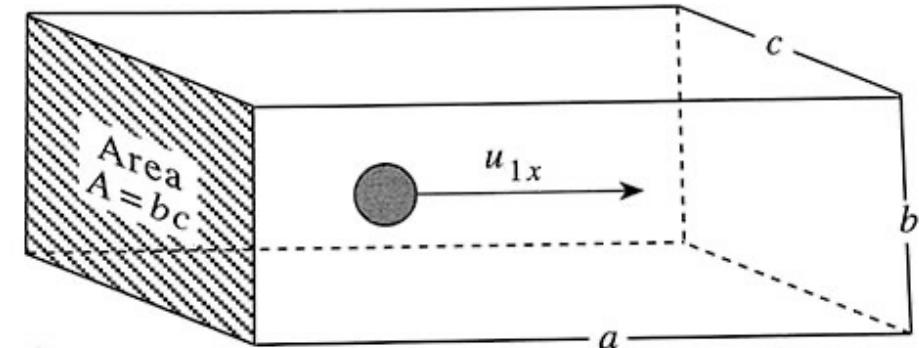
- From statistical thermodynamics we know that the average translational energy per molecule of an ideal gas is

$$\left\langle \frac{1}{2} mu^2 \right\rangle = \frac{1}{2} m \langle u^2 \rangle = \frac{3}{2} k_B T \quad \left(\frac{1}{2} k_B T \text{ per direction} \right)$$

- Substitute into above eq. yields

$$PV = Nk_B T = nRT$$

Ideal Gas Law



$$PV = Nk_B T = nRT$$

- For the *root-mean-square speed* of a gas molecule we find:

$$u_{rms} = \sqrt{\langle u^2 \rangle} = \sqrt{\frac{3RT}{M}} = \sqrt{\frac{3k_B T}{m}}$$

- Note, in general $\langle u^2 \rangle \neq \langle u \rangle^2$, so $u_{rms} \neq \langle u \rangle$ $\langle u \rangle$: *average speed*
- *How does u_{rms} look plotted against temperature?*
- *What happens if I go to a lighter gas molecule/element?*

4.2 The Maxwell-Boltzmann Distribution

Goal: to find speed distribution of a gas

- Historically earlier: somewhat heuristic treatment by **Maxwell**
→No need to learn, but take a look at the lecture notes for the derivation, if you are interested :)
- We will here derive **Boltzmann's** general approach

- Use **Boltzmann distribution** from statistical thermodynamics:
- In thermal equilibrium, the probability P_i of finding the system in state of a certain energy E_i is:

$$P_i = \frac{e^{-\frac{E_i}{k_B T}}}{\sum_j e^{-\frac{E_j}{k_B T}}} = \frac{e^{-\frac{E_i}{k_B T}}}{Q}$$

with $Q = \sum_j e^{-\frac{E_j}{k_B T}}$: the partition function, sum over all energy levels

and $\int_{-\infty}^{\infty} e^{-\frac{E_j}{k_B T}} dE = 1$

- Using that the translational energy for one velocity component (e.g. x) of a gas molecule is $\frac{1}{2}mu_x^2$ we substitute to get:

$$P_{(u_{x,i})} = \frac{e^{-\frac{mu_{x,i}^2}{2k_B T}}}{Q}$$

$$\text{with } Q = \int_{-\infty}^{\infty} e^{-\frac{mu_x^2}{2k_B T}} du_x$$

- Use that $\int_{-\infty}^{\infty} e^{-ax^2} dx = \sqrt{\frac{\pi}{a}}$

- to find for the partition function $Q = \sqrt{\frac{2\pi k_B T}{m}}$

- And overall $f(u_j) = \sqrt{\frac{M}{2\pi R T}} e^{-\frac{Mu_j^2}{2RT}} = \sqrt{\frac{m}{2\pi k_B T}} e^{-\frac{mu_j^2}{2k_B T}}$

probability distribution for a single velocity component

- To derive the *speed* distribution of an ideal gas (i.e. distribution of the *magnitude* of velocity), we now write down the 3-dimensional velocity distribution function $P(u_x, u_y, u_z)$:

$$P(u_x, u_y, u_z) = \left(\frac{m}{2\pi k_B T}\right)^{\frac{3}{2}} e^{-\frac{m(u_x^2 + u_y^2 + u_z^2)}{2k_B T}}$$

- But we want to find the actual probability in a given, very small interval (meaning it is approximated to be constant):

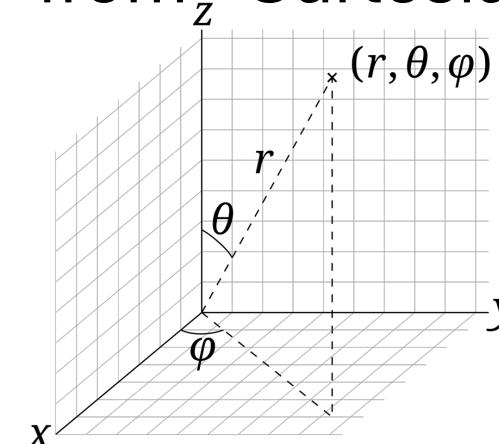
$$\tilde{P} = P(u_x, u_y, u_z) du_x, du_y, du_z$$

- We perform a coordinate transformation from Cartesian to spherical coordinates:

$$x = r \sin\theta \cos\varphi$$

$$y = r \sin\theta \sin\varphi$$

$$z = r \cos\theta$$



$$P(u_x, u_y, u_z) = \left(\frac{m}{2\pi k_B T}\right)^{\frac{3}{2}} e^{-\frac{m(u_x^2 + u_y^2 + u_z^2)}{2k_B T}}$$

$$\tilde{P} = P(u_x, u_y, u_z) du_x, du_y, du_z$$

- We perform a coordinate transformation from Cartesian to spherical coordinates:
 - using $u_x^2 + u_y^2 + u_z^2 = u^2$
 - and $du_x du_y du_z = \left| \frac{\partial(u_x, u_y, u_z)}{\partial(u, \varphi, \theta)} \right| du d\varphi d\theta = u^2 \sin \theta du d\varphi d\theta$
- We eliminate the angular part through integration over all directions the molecule can travel
- $\tilde{P}(u)du = \left(\frac{m}{2\pi k_B T}\right)^{\frac{3}{2}} u^2 e^{-\frac{mu^2}{2k_B T}} du \int_0^{2\pi} d\varphi \int_0^\pi \sin \theta d\theta$

$$\tilde{P}(u)du = \left(\frac{m}{2\pi k_B T}\right)^{\frac{3}{2}} u^2 e^{-\frac{mu^2}{2k_B T}} du \int_0^{2\pi} d\varphi \int_0^{\pi} \sin \theta \, d\theta$$

$$= 4\pi$$

- We thus obtain the

Maxwell-Boltzmann distribution:

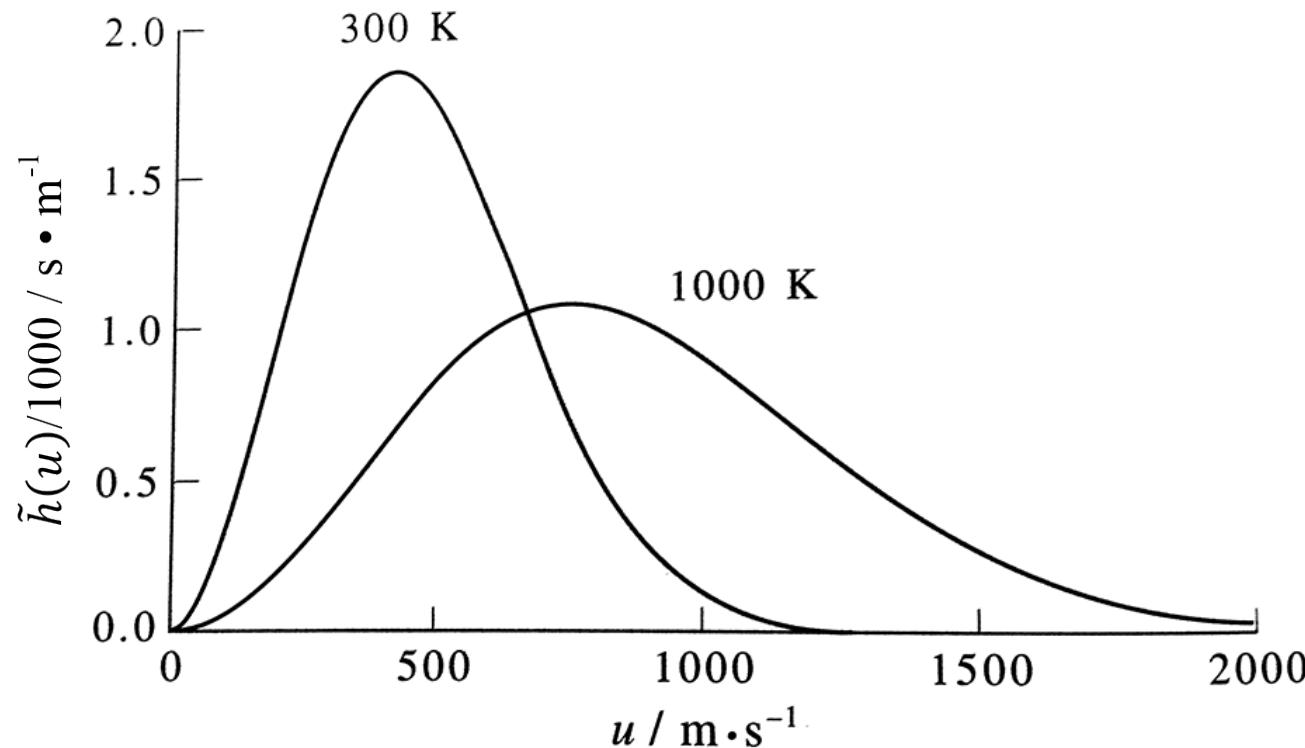
$$\tilde{P}(u)du = 4\pi \left(\frac{m}{2\pi k_B T}\right)^{\frac{3}{2}} u^2 e^{-\frac{mu^2}{2k_B T}} du$$

Maxwell-Boltzmann distribution:

$$\tilde{P}(u)du = 4\pi \left(\frac{m}{2\pi k_B T}\right)^{\frac{3}{2}} u^2 e^{-\frac{mu^2}{2k_B T}} du$$

also called $F(u)du$

Example: Speed distribution of nitrogen at 300 K and 1000 K:



4.3 Measurements of the Velocity Distribution

- We remember from before that for ideal gas $PV = \frac{1}{3}Nm\langle u^2 \rangle$
- and that the rms-velocity is $u_{rms} = \sqrt{\langle u^2 \rangle} = \sqrt{\frac{PV}{N m}}$
- We want to verify that generally across all values this holds true:

$$P_{(u_x)} = \frac{e^{-\frac{mu_x^2}{2k_B T}}}{Q} \quad \text{But how?}$$

- Idea:

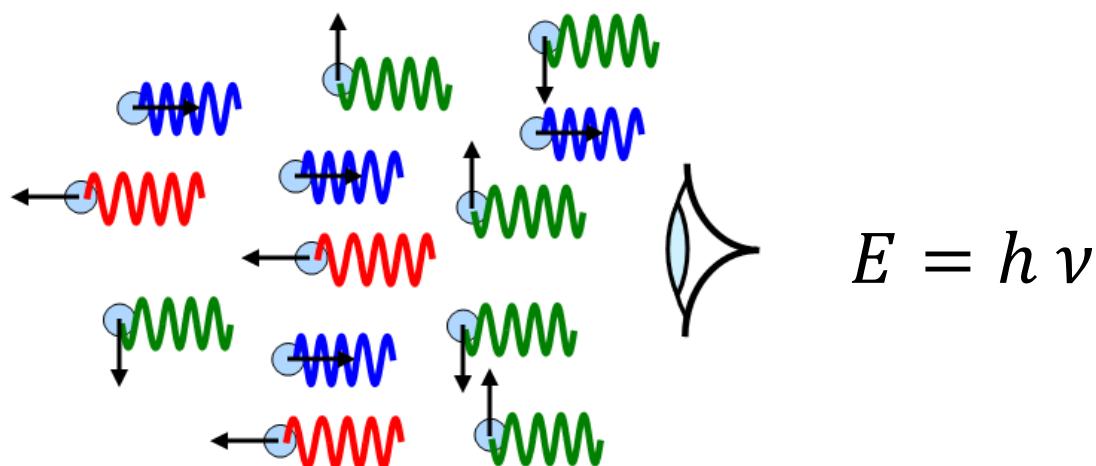
Measure something easily observable, that is *influenced* by u_x

→ Spectroscopy! Measure absorption or emission of light

A) Measure *Doppler broadening* of your absorption or emission spectrum of molecules in gas phase

- if molecule moves towards us: blue-shift/frequency increase of light
- if molecule moves away from us: red-shift/frequency decrease of light

→ Use this to infer speed distribution of molecules, or temperature of the gas :)



- Frequency of light emitted or absorbed:

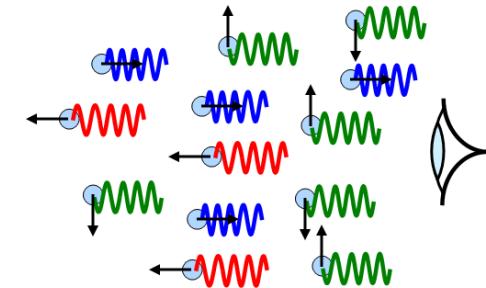
$$\nu = \nu_0 \left(1 + \frac{u_x}{c} \right)$$

ν_0 : transition frequency of static molecule

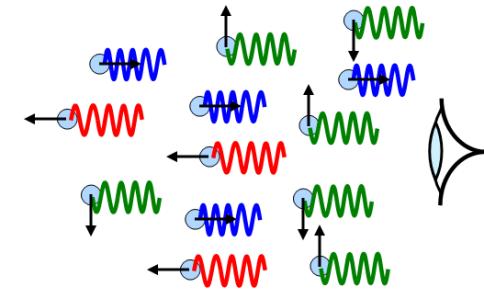
$$\rightarrow u_x = \left(\frac{\nu}{\nu_0} - 1 \right) c$$

- How does intensity distribution of light frequencies $I(\nu)$ look if u_x follows Boltzmann distribution?
- Substitute into the 1D velocity distribution (along observer direction only!) to find:

$$I(\nu) \propto e^{-\frac{mu_x^2}{2k_B T}} \propto e^{-\frac{mc^2(\nu-\nu_0)^2}{2\nu_0^2 k_B T}}$$

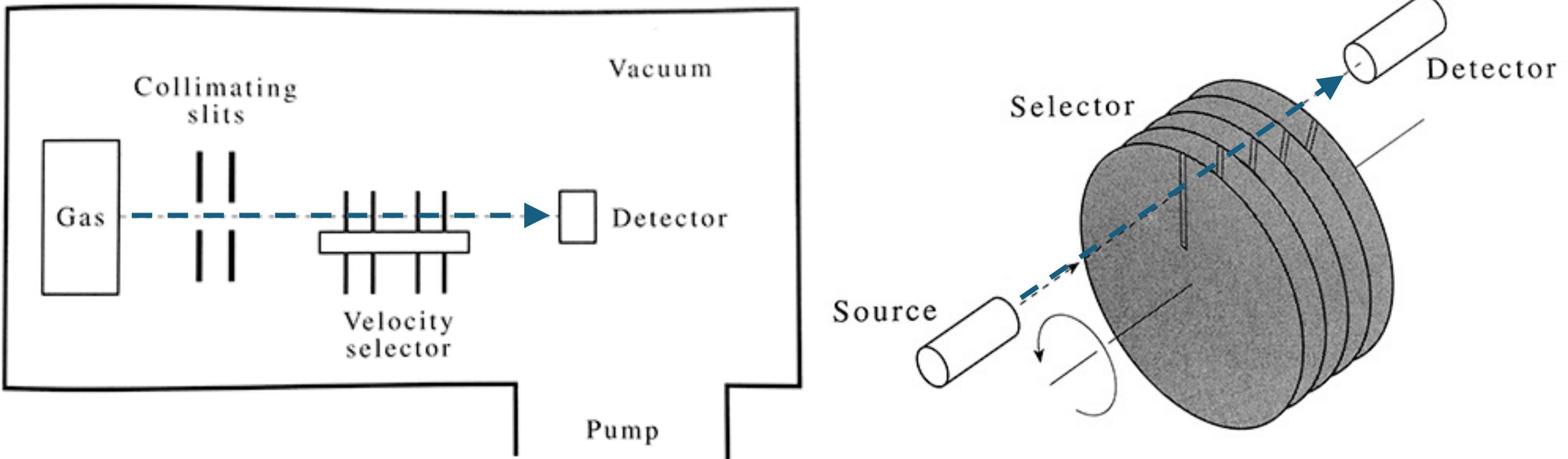


$$I(\nu) \propto e^{-\frac{mc^2(\nu-\nu_0)^2}{2\nu_0^2 k_B T}}$$



- We see a broadening of the line shape following a gaussian
- With variance $\sigma^2 = \frac{\nu_0^2 k_B T}{mc^2}$
- Meaning the width of the spectrum increases with and is proportional to the temperature

B) Measure gas particles arriving at a detector



- slits cut into series of spinning discs
- a given rotation speed will only allow molecules of one specific velocity to pass
- measurement of the gas flux exiting the discs as a function of the rotation frequency yields the velocity distribution