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Recap from last session

* Michaelis-Menten mechanism for enzyme kinetics

* various assumptions made k4 k-
» different ways of plotting E+S & ES - E+P
« different forms of inhibition MK k-1 1 Ky,
Bl ESI
“mixed”

* Autocatalysis (follows an “S curve”)
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3.5 Polymerization
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3.5 Polymerization

e 2 cases of polymerization reactions: stepwise & chain type

Stepwise polymerization

* Any 2 monomers may react at any time or add to chain growth

* E.g. polycondensation of a hydroxyacid to from a polyester:
HO-R-COOH + HO-R-COOH —» HO-R-COO-R-COOH + H,0

* Rate equation for consumption of acid groups:

_aA] _ _4[COOH] _

” ” k[COOH][OH] = k[A]*

using [COOH] = [OH] = [A]




HO-R-COOH + HO-R-COOH —» HO-R-COO-R-COOH + H,0
d[A] _ a[COOH]
o4t dt
* Integration yields:

= k[COOH][OH] = k[A]?

_ _ A,

[Ale = 1+kt[A]

* We define the fraction p of monomers that reacted:
_[A]-[A] _ ke[A]

[Al,  1+kt[A],
* We define the degree of polymerization, i.e. average chain length (N) :
_ Al _ 1

* How does average chain length increase with time?  Linearly!



Chain polymerization
* proceeds by adding monomers to end of growing chain

* e.g. radical polymerization of ethylene to polyethylene:
R—CH2CH2 ¢ + CH2CH2 — R—CH2CH2—CH2CH2 ¢
* Proceeds in 3 distinct steps:

A) Initiation
o A .
* e.g. thermally ©><o:) 7<© — ©><O
k.

AR _ ok [n]

slow

l
In->2R- withrate equation: ,
reaction

* Radical reacts with monomer M to give radical M; -

fast fast
R-+M - M- reaction



Chain polymerization
B) Propagation (chain growth)

* Addition of further monomers M for chain growth
Kp
Ml - + M — MZ °

kp
M, +M— M-

* We simplify by assuming same rate const. kp Independent of chain
length

* Rate of growth: v, = kyp[My -[[M]



Chain polymerization
C) Termination

* when 2 radicals combine
ke
M, +M,,- > M,,,,, (mutual termination)

* We will not consider things like
M, +M,,-—» M, + M,, (disproportionation)

M, +M-> M, + M- (chain transfer)

* How to get a solution for the rate of polymer growth v,, 2?7



* How to get a solution for the rate of polymer growth v, ?
_aM] _
dt

Up = kp M - |[M]

4M-] " = production - depletion

\ initiation termination

= 2fk;|In| - depletion

radical initiating reaction

with efficiency of initiation f =

= 2fk;[In] —2k.[M ]2

total number of radicals

* How high is the conc. of M - typically compared to rest?



* We can apply steady-state approximation to all radical chains:

P = 0 = 27k [1n] - 2k, [M T2

* where we assume initiator radicals react instantaneously to form
radical chains with efficiency f

e and took the second term from mutual termination

* Separate variables and integrate to yield
1

M ] = (242 [1n):

t



* How to get a solution for the rate of polymer growth v, ?
d[M] _

vp = == ky[M - ][M]
inserting IM -] = (fk—kt‘)E [In]%
* yields
Up = — d[dl\f] = kyp (f_}tl)E [In]%[M]
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* We define the kinetic chain length A:

__ monomer units consumed
~ activated centers produced

* We estimate A by taking the ratio of the corresponding rates

..and by assuming steady-state conditions, so

rate of activated center production = rate of termination

_ __rate of monomer consumption v, _ kp[M-][M]  ky[M-[[M]
~ rate of activated center production = v; = 25k;[In] 2k [M]*
_ kM) Ky -
T 2k M T %[In] 2[M]

2(fkikt)
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* We obtain the degree of polymerization (N) by assuming all chains are
terminated by mutual termination, yielding “the real chain length” :

(N) = 24

k _1
£— [In] 2[M]
(fkike)

* What happens when using smaller initiator concentrations?

1
2

- Polymers with higher molecular weight are obtained
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Chapter 4

Kinetic Theory of Gases



4.1 Average Translational Kinetic Energy

assume elastic collisions between hard spheres

- -/
-

Fhomws
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4.1 Average Translational Kinetic Energy

Deriving the Ideal Gas Law
Assumptions:

* |deal gas behavior independent of composition at sufficiently low
pressure, so no interactions (average distance >> diameter of gas
particle)

* Thus, no potential energy, only kinetic energy
* Collisions (for now) are fully elastic between hard spheres

* No change to total translational energy upon collision, i.e. no
internal degrees of freedom (vibrations & rotations) excited during
collision

15



* Determine pressure of an ideal gas

with mass m

and with velocity u, and
components Ugy, Ugy,U;,
In this rectangular box

* Momentum p = m uq,
* After elastic collision 2 —mu,

* Force exerted on wallis
_ Ap _ MAU

At At
* Absolute change in momentum upon collision:

A(muyy) = |—muyy, — mug,| = 2muy,

16




* Absolute change in momentum upon collision:

P,
A(mulx) — |_mu1x — mulxl = 2Muq, H ':
Are, Uy,
* Time period it takes for a round trip:
At = 2 —
Ugx

* Momentum per unit time (force) imparted on right wall therefore:

2
A(muqy) = muiy

= F,
At a
e Newton’s 2nd law: force on molecule = force on wall

e Associated pressure P; by dividing by surface area of right wall bc:

F muz muz .
pp=2=—"=——1 with volume V = abc
bc abc %4
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* Summing over all molecules for total pressure

mu? >
_ N _ VN jx _ MmN 2 ‘ =
F=2mh =27 =5 25 NN
. @ .
* With "y uf = N(uZ) we obtain a
PV = m N{(u?)

 Gasisisotropic, so

(uz) = (ug) = (u7)

 Since u?

(u?) = (uz) + (uy) + (u7)

= u; + uj + us, it follows that
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(u?) = (ug) + (uy) + (u7)

+Hence  (u?) = (u?)

.........................

e and PV = §1vm<u2> :

* From statistical thermodynamics we know that the average
translational energy per molecule of anideal gas is

(%muz) = %m(uz) = %kBT (% kT per direction)
* Substitute into above eq. yields
PV = NkgT = nRT

ldeal Gas Law
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PV = NkgT = nRT
* For the root-mean-square speed of a gas molecule we find:

/3RT /3kBT
Upms =/ (U?) = Al

* Note, in general (u?) #= (u)?, so u,,s # {u) {(u): average speed

* How does u,,,s look plotted against temperature?
* What happens if | go to a lighter gas molecule/element?

20



4.2 The Maxwell-Boltzmann Distribution

Goal: to find speed distribution of a gas

* Historically earlier: somewhat heuristic treatment by Maxwell

—->No need to learn, but take a look at the lecture notes for the
derivation, if you are interested :)

* We will here derive Boltzmann’s general approach

21



* Use Boltzmann distribution from statistical thermodynamics:

* In thermal equilibrium, the probability P; of finding the system in
state of a certain energy E; is:

Ej Ej
e kBT e BT
P, = — =
__J Q
Zje kgT

Ej

with Q = Z]- e kBT :the partition function, sum over all energy levels

Ej

and [ e kBTdE =1
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* Using that the translational energy for one velocity component

.1 .
(e.g. x) of a gas molecule is Emu,zc we substitute to get:

2
mux’i

_ 6_2 kBT
P(ux,i) o )

2 "
X,

withQ = [~ e 2kBT du,

mu

- Usethat [ e~ " dx =

NE

2 probability

] L3 L L
M ) , m - distribution for a
. ) = = 2kpT . .
* And overallf(u]) 21TRT e 2rT 2kgT € B single velocity

component 23




* To derive the speed distribution of an ideal gas (i.e. distribution of
the magnitude of velocity), we now write down the 3-dimensional

velocity distribution function P(ux, Uy, uz):
2

3 m(u,zc+uy+u§)

_ m_ \z2 ~ 2kpT
P(ux,uy,uz) - (anBT) € g

* But we want to find the actual probability in a given, very small
Interval (meaning it is approximated to be constant):

P = P(uy, uy,u,) duy, du,, du,

* We perform a coordinate transformation from Cartesian to
spherical coordinates: < (r,0,0)
X =71 sinf cose e
y = r sinf sing 0/ |
Z =1 cosf oY
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3 m(u,zc+u32,+u§)

_ m_ \z2 ~ 2kpT
P(ux,uy,uz) - (anBT) € g

P = P(uy, uy, uy) duy, du,, du,

* We perform a coordinate transformation from Cartesian to
spherical coordinates:

- usingug; + uj +ug = u?

0 (Uy, Uy, Uz)
d(u,,0)
* We eliminate the angular part through integration over all

directions the molecule can travel

3 mu2

* P(uw)du = ( — )Euze_mdu fozn de [, sin6 do

2ntkgT

du do df = u?sin8 du de do

* and du,du, du, = ‘
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3 mu?

P(w)du = ( = )2 u?e 2kBTdy fozn de [, sin6 d

2tkgT

=41

* We thus obtain the Maxwell-Boltzmann distribution:

3 mu?

; _
) u?e 2kTdy

m
2ntkgT

P(wdu = 4n (

26



Maxwell-Boltzmann distribution:

E muz
P(uw)du = 4-7'[( = )2 u?e 2kBTdy
2ntkgT
also called F(u)du
Example: Speed distribution of nitrogen at 300 K and 1000 K:
2.0~ 300 K
TE 1.5
f.f 1000 K
S 1.0
2 05
(B
0.0 | i | =
0 500 1000 1500 2000

u/ m.s’!



4.3 Measurements of the Velocity Distribution

* We remember from before that for ideal gas PV = %Nm(uz)

* and that the rms-velocity is U, = +/{u?) = /%

* We want to verify that generally across all values this holds true:

mus

e 2kgT
P(ux) = 0 But how?

* |dea:
Measure something easily observable, that is influenced by uy
- Spectroscopy! Measure absorption or emission of light

28



A) Measure Doppler broadening of your absorption or emission
spectrum of molecules in gas phase

* if molecule moves towards us: blue-shift/frequency increase
of light

* if molecule moves away from us: red-shift/frequency decrease
of light

- Use this to infer speed distribution of molecules, or temperature

of the gas :)
awn ?’WW

—AW AW
*WWV‘JW\M' E=hv

o T
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* Frequency of light emitted or absorbed: W %m Q>
Uy
v=vo(1+%) L

Vo transition frequency of static molecule
U, = (;’—0 — 1) C

* How does intensity distribution of light frequencies I(v) look if u,
follows Boltzmann distribution?

* Substitute into the 1D velocity distribution (along observer

direction only!) to find:
mug _mc?(v—vg)?

I(v) x e 2keT oc e 2VoknT
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_mc?(v—vg)*

I(v) « e 2v5kgT .

* We see a broadening of the line shape following a gaussian
ngBT
mc?

« With variance g2 =

* Meaning the width of the spectrum increases with and
proportional to the temperature

IS
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B) Measure gas particles arriving at a detector

, ‘ Vacuum ,'KS;::;zeteCtor
Collimating e N

slits Selector &

Gas . . . I - - - - --> Dclccl()r

-\ \ '.
o | <
VCIOC“)’ SOUTC@ ;
selector / 1]/

Pump I

slits cut into series of spinning discs

a given rotation speed will only allow molecules of one specific
velocity to pass

measurement of the gas flux exiting the discs as a function of the
rotation frequency yields the velocity distribution .



